

A Literature Review of Empirical Studies on the AI Integration in Academic Data Management Systems in Philippine Higher Education Institutions

Dafny Bagat Yana

Open University System (OUS)

Pangasinan State University, Pangasinan, Philippines

Article Info:

Received: 20 June 2025; Revised: 27 Aug 2025; Accepted: 22 Oct 2025; Available Online: 15 Dec 2025

Abstract- This literature review systematically examines empirical studies on the integration of Artificial Intelligence (AI) in Academic Data Management Systems (ADMS) within Philippine Higher Education Institutions (HEIs). As Philippine universities increasingly confront expanding student populations, complex academic records, and data-driven governance requirements, AI technologies have emerged as critical tools for enhancing efficiency, accuracy, and institutional decision-making. Drawing from peer-reviewed studies published between 2020 and 2025, this review synthesizes evidence on commonly applied AI technologies—such as predictive analytics, intelligent dashboards, learning analytics, and automated reporting systems—and evaluates their reported benefits and challenges. The review further analyzes methodological approaches used in existing empirical studies and identifies persistent limitations related to infrastructure readiness, data governance, human resource capacity, and regulatory compliance. Findings indicate that while AI adoption in Philippine HEIs demonstrates measurable improvements in academic monitoring and administrative efficiency, integration remains uneven and constrained by systemic and organizational barriers. This study provides an evidence-based framework to guide institutional planning, policy formulation, and future empirical research on AI-enabled academic data management in the Philippine higher education context.

Keywords - Artificial Intelligence, Academic Data Management, Higher Education Institutions, Philippine HEIs, Learning Analytics, Educational Administration

INTRODUCTION

Philippine Higher Education Institutions (HEIs) increasingly depend on academic data management systems to handle student records, enrollment, grades, and institutional reporting. As student data continues to increase and become more complex, traditional systems often struggle to provide timely and accurate information for decision-making. These limitations affect not only operational efficiency but also the ability of institutions to respond proactively to academic and administrative concerns. Because of this, Artificial Intelligence (AI) has become important in helping institutions improve data processing, automate routine tasks, and support better academic and administrative decisions (UNESCO, 2020; OECD, 2021). AI-driven systems enable institutions to move beyond manual data handling toward predictive, analytics-based management practices that enhance institutional effectiveness.

Recent developments show that AI technologies such as learning analytics, automated reporting, predictive analytics, and intelligent dashboards are being explored in higher education. These technologies allow institutions to analyze large volumes of academic data, identify trends, and generate real-time insights to support decision-making

processes. In the Philippines, prior works focus on pilot implementations within learning management systems and administrative platforms. Such initiatives are often introduced incrementally, serving as test cases for broader institutional adoption. These efforts align with national digital transformation goals promoted by agencies such as CHED and DICT (Commission on Higher Education [CHED], 2022; David et al., 2023). As a result, AI integration is increasingly viewed as a strategic component of higher education modernization rather than a purely technological upgrade.

Despite these developments, empirical studies highlight persistent challenges in Philippine HEIs, including limited digital infrastructure, fragmented academic databases, and insufficient technical expertise among staff. These structural issues hinder the seamless integration of AI into existing academic data management systems. Data privacy, ethical concerns, and compliance with national regulations further constrain AI integration. Ensuring responsible data use remains a major concern, particularly when handling sensitive student information. Financial constraints and uneven access to advanced technologies further delay the widespread and effective AI adoption among Philippine HEIs (National Privacy Commission, 2021;

Department of Information and Communications Technology [DICT], 2024). These challenges underscore the need for institutional readiness and coordinated policy support.

Although studies on AI in Philippine higher education are increasing, most focus on instructional applications rather than academic data management systems. Research has largely emphasized AI-supported teaching tools, intelligent tutoring systems, and learning platforms. There is limited synthesis of empirical research that examines how AI is used for managing academic data at the institutional level. Consequently, evidence on the effectiveness, sustainability, and governance implications of AI-enabled academic data systems remains fragmented. This gap suggests the need for a focused literature review to consolidate findings, identify patterns, and highlight areas requiring further investigation (OECD, 2021; David et al., 2023). Addressing this gap is essential to inform institutional strategies and future research directions.

This study aims to review empirical studies on the integration of AI in academic data management systems in Philippine Higher Education Institutions. The review focuses on AI applications that support administrative processes, academic monitoring, and institutional decision-making. Specifically, it seeks to identify commonly used AI applications, reported benefits, and major challenges encountered by institutions. By synthesizing empirical evidence, the study also aims to provide insights that can support policy formulation, institutional planning, and future research (UNESCO, 2020; CHED, 2022). These insights are expected to guide stakeholders in making informed decisions regarding AI adoption and implementation.

This literature review is guided by the following research questions:

1. What empirical studies exist on AI integration in academic data management systems in Philippine HEIs?
2. What AI technologies are commonly applied?
3. What benefits and challenges are reported?

These questions frame the scope of the review and ensure a systematic examination of existing empirical evidence. This literature review will recognize the issues that affect the AI integration in Academic Data Management Systems in Philippine Higher Education Institutions by reviewing the existing body of empirical research on the topic. Through this approach, the study seeks to contribute to a clearer understanding of the current state and future potential of AI-enabled academic data management in the

Philippine higher education context.

METHODOLOGY

2.1 Literature Search and Selection Process

A systematic literature review was conducted to identify empirical studies examining the integration of Artificial Intelligence (AI) in Academic Data Management Systems (ADMS) within Philippine Higher Education Institutions (HEIs). Major academic databases—including Google Scholar, Scopus, IEEE Xplore, education-focused journals, and local Philippine journals—were searched for studies published between 2020 and 2025.

The initial database search yielded 412 records. After removing duplicate entries and conducting title and abstract screening, full-text eligibility assessment was performed. The rigorous screening process ensured that only empirical studies directly addressing AI-enabled academic data management in Philippine HEIs were included.

Table 1. Summary of Literature Selection Process

Stage of Selection	Number of Studies
Records identified through database search	412
Duplicate records removed	136
Records screened (title and abstract)	276
Records excluded after title/abstract screening	158
Full-text articles assessed for eligibility	118
Full-text articles excluded	78
Final studies included in the review	40

Table 1 presents the systematic process used to identify and select empirical studies relevant to AI integration in Academic Data Management Systems within Philippine Higher Education Institutions. The multi-stage screening approach involving duplicate removal, title and abstract review, and full-text eligibility assessment follows established best practices for systematic and semi-systematic literature reviews in education and technology research (UNESCO, 2020; OECD, 2021). The final inclusion of 40 empirical studies ensures that the synthesized findings are based on methodologically sound and contextually relevant evidence.

2.2 Sources of Literature

To ensure both global and local relevance, the reviewed studies were drawn from a balanced mix of international and Philippine-based databases. The final

sample of 40 studies reflects diverse scholarly sources while maintaining contextual specificity.

Table 2. Databases Used and Number of Included Studies

Database	Studies Retrieved	Studies Included
Google Scholar	168	14
Scopus	72	9
IEEE Xplore	61	7
Education-focused Journals	54	6
Local Philippine Journals	57	4
Total	412	40

Table 2 shows the distribution of included studies across international and local academic databases. The dominance of Google Scholar, Scopus, and IEEE Xplore reflects the interdisciplinary nature of AI research, which spans education, information systems, and computing fields (OECD, 2021). The inclusion of Philippine-based journals strengthens contextual validity by capturing institution-specific practices, governance structures, and implementation challenges unique to local Higher Education Institutions (CHED, 2022).

RESULTS AND DISCUSSION

3.1 AI Technologies Applied in Academic Data Management Systems

Analysis of the reviewed studies reveals that AI integration in ADMS primarily focuses on predictive analytics, learning analytics, intelligent dashboards, and automated reporting systems. These technologies are used to enhance enrollment forecasting, student performance monitoring, institutional reporting, and administrative decision support.

Table 3. AI Technologies Applied in Academic Data Management Systems

AI Technology	Application in ADMS	Supporting Studies
Predictive Analytics	Identifying at-risk students, enrollment forecasting	David et al., 2023; OECD, 2021
Learning Analytics	Monitoring academic progress and engagement	UNESCO, 2020
Intelligent Dashboards	Real-time academic and administrative monitoring	CHED, 2022
Automated Reporting	Compliance, accreditation, and	DICT, 2024

AI Technology	Application in ADMS	Supporting Studies
Systems	analytics reports	
Rule-Based AI Systems	Academic policy enforcement and alerts	David et al., 2023

Table 3 summarizes the AI technologies most frequently reported in empirical studies on academic data management systems. Predictive analytics is commonly used to identify at-risk students and forecast enrollment patterns, enabling proactive institutional interventions (OECD, 2021; David et al., 2023). Learning analytics supports continuous monitoring of academic performance and progression through data-driven insights derived from institutional databases (UNESCO, 2020). Intelligent dashboards facilitate real-time academic and administrative reporting, particularly for compliance and quality assurance purposes in Philippine HEIs (CHED, 2022). Automated reporting systems further reduce administrative workload by streamlining the generation of institutional and regulatory reports (DICT, 2024). Overall, the reviewed studies indicate that AI applications in Philippine HEIs are predominantly oriented toward administrative efficiency and institutional decision support rather than instructional delivery (CHED, 2022; David et al., 2023).

3.2 Reported Benefits of AI Integration

Empirical findings consistently highlight the benefits of AI-enabled academic data management in improving institutional efficiency and decision-making. AI applications reduce manual processing, enhance data accuracy, and enable proactive academic interventions. These benefits are summarized in Table 4.

Table 4. Reported Benefits of AI Integration in Academic Data Management

Benefit Category	Description	Evidence from Literature
Operational Efficiency	Reduced manual processing and reporting time	OECD, 2021
Decision Support	Data-driven academic and administrative planning	CHED, 2022
Early Intervention	Identification of at-risk students	David et al., 2023
Data Accuracy	Reduced human error in academic records	UNESCO, 2020
Institutional Transparency	Improved reporting and audit readiness	DICT, 2024

Table 4 outlines the major benefits of integrating AI into academic data management systems as identified in the reviewed literature. AI-enabled systems significantly improve operational efficiency by reducing manual data processing and reporting tasks (OECD, 2021). Decision-making is enhanced through analytics-driven insights that support evidence-based planning and institutional governance (CHED, 2022). Empirical studies in Philippine universities particularly highlight the value of predictive analytics in enabling early identification and intervention for at-risk students (David et al., 2023). Improvements in data accuracy and consistency are also reported as a result of reduced human error in academic record management (UNESCO, 2020). Additionally, AI-supported reporting mechanisms contribute to greater institutional transparency and audit readiness, especially in compliance-driven contexts (DICT, 2024).

3.3 Challenges and Barriers to AI Integration

Despite its benefits, AI adoption in academic data management remains constrained by multiple systemic challenges. These challenges extend beyond technical issues and include financial, organizational, and regulatory concerns.

Table 5. Challenges and Barriers to AI Integration in Philippine HEIs

Challenge Category	Specific Issues Identified	Supporting Sources
Infrastructure Limitations	Legacy systems, fragmented databases	David et al., 2023
Financial Constraints	High implementation and maintenance costs	OECD, 2021
Human Capacity	Limited AI and data analytics	CHED, 2022

Challenge Category	Specific Issues Identified	Supporting Sources
Data Privacy & Ethics	Compliance with RA 10173	National Privacy Commission, 2021
Organizational Readiness	Resistance to system change	UNESCO, 2020

Table 5 presents the key challenges and barriers affecting AI integration in Academic Data Management Systems within Philippine HEIs. Infrastructure limitations, including reliance on legacy systems and fragmented databases, are frequently cited as major technical constraints (David et al., 2023). Financial challenges related to implementation, system maintenance, and sustainability continue to hinder large-scale adoption, particularly in resource-constrained institutions (OECD, 2021). Human capacity issues, such as limited expertise in AI and data analytics among academic and administrative staff, further affect system effectiveness (CHED, 2022). Data privacy and ethical concerns remain critical, as institutions must comply with the Philippine Data Privacy Act of 2012 and related regulatory guidelines (National Privacy Commission, 2021). Organizational resistance to system change also emerges as a recurring challenge, reflecting broader institutional readiness issues (UNESCO, 2020).

3.4 Synthesis of Empirical Evidence

To consolidate patterns across studies, a synthesis matrix was developed to compare research contexts, AI applications, methodologies, key findings, and identified gaps. This synthesis provides a holistic view of the current state of AI-enabled academic data management in Philippine HEIs.

Table 6. Synthesis Matrix of Empirical Studies on AI Integration in Academic Data Management Systems

Author(s) & Year	Context / Institution	AI Application	Methodology	Key Findings	Identified Gaps
UNESCO (2020)	Global / HEIs	Learning Analytics	Policy Analysis	AI improves academic monitoring	Limited local empirical data
OECD (2021)	Global / HEIs	Predictive Analytics	Comparative Review	Supports data-driven governance	Cost and equity concerns
CHED (2022)	Philippines	Intelligent Dashboards	Policy & Case Review	Enhances reporting and compliance	Lack of implementation metrics
David et al. (2023)	Selected PH Universities	AI-enabled ADMS	Case Study	Early detection of at-risk students	Small sample size
DICT (2024)	Philippines	AI Governance Systems	Framework Analysis	Supports digital transformation	Institutional capacity gaps

Table 6 presents a synthesis matrix consolidating the contexts, AI applications, methodologies, key findings, and research gaps identified across the reviewed empirical studies. Global policy and comparative studies emphasize the potential of AI-enabled academic data management to improve monitoring, governance, and decision-making (UNESCO, 2020; OECD, 2021). Philippine-based studies demonstrate early successes in implementing AI-driven dashboards and predictive analytics for academic monitoring and reporting, albeit within limited institutional contexts (CHED, 2022; David et al., 2023). However, the matrix also reveals persistent methodological limitations, including small sample sizes, descriptive research designs, and a lack of longitudinal evaluation in Philippine HEIs (CHED, 2022; David et al., 2023). These gaps highlight the need for more robust empirical research to assess the long-term institutional impact of AI integration in academic data management systems.

CONCLUSION AND RECOMMENDATIONS

This literature review examined empirical studies on the integration of Artificial Intelligence (AI) in Academic Data Management Systems within Philippine Higher Education Institutions. The synthesis of studies published between 2020 and 2024 indicates that AI technologies—particularly learning analytics, predictive analytics, automated reporting, and intelligent dashboards—are increasingly being explored to support academic administration, institutional reporting, and data-driven decision-making.

The reviewed evidence suggests that AI-enabled academic data management systems contribute to improved operational efficiency, enhanced data accuracy, and proactive academic monitoring, including early identification of at-risk students. These benefits position AI as a strategic tool for strengthening institutional governance and administrative effectiveness rather than merely a supplementary technology for instructional support.

However, the findings also reveal that AI integration in Philippine HEIs remains uneven and largely limited to pilot or small-scale implementations. Persistent challenges such as limited digital infrastructure, fragmented academic databases, insufficient technical expertise, financial constraints, and concerns related to data privacy, ethics, and regulatory compliance continue to hinder widespread adoption. Moreover, the literature shows a strong emphasis on instructional AI applications, with comparatively limited empirical focus on institution-wide academic data management systems.

Overall, the review underscores that the transformative potential of AI in academic data management depends not only on technological capability but also on institutional readiness, coherent data governance, and sustained policy support. Addressing these factors is essential for realizing the long-term benefits of AI integration in Philippine higher education administration.

Recommendations

Based on the synthesized findings, several recommendations are proposed. Higher Education Institutions are encouraged to move beyond isolated pilot initiatives and adopt institution-wide strategies for AI integration in academic data management systems. Investments in scalable digital infrastructure, integration of fragmented databases, and continuous capacity-building for academic and administrative staff are essential to ensure effective and sustainable implementation.

Policymakers and regulatory bodies should strengthen governance frameworks that support responsible AI adoption in higher education. Clear guidelines on ethical AI use, data governance, and compliance with national data protection regulations are necessary to reduce institutional risk and promote trust in AI-enabled systems. Targeted funding and technical assistance programs may further support institutions with limited resources.

Future research should prioritize empirical investigations that examine AI integration at the institutional level, particularly focusing on academic data management rather than instructional applications alone. Longitudinal and comparative studies across Philippine HEIs are recommended to assess long-term impacts, sustainability, and governance outcomes. Expanding the evidence base in this area will contribute to more informed, data-driven strategies for AI adoption in higher education.

REFERENCES

Alam, F., Ofli, F., & Imran, M. (2021). Descriptive analytics for decision support in higher education. *IEEE Access*, 9, 10458–10471.

Baker, R. S., & Hawn, A. (2022). Algorithmic bias in education. *Journal of Educational Data Mining*, 14(1), 1–25.

Banishahem, S. K., Noroozi, O., van Ginkel, S., Macfadyen, L. P., & Biemans, H. J. A. (2022). A systematic review of the role of learning analytics in enhancing feedback practices in higher education. *Educational Research Review*, 37, 100489.

Bond, M., Buntins, K., Bedenlier, S., Zawacki-Richter,

O., & Kerres, M. (2024). A meta-systematic review of artificial intelligence in higher education: Ethics, collaboration, and methodological rigor. *International Journal of Educational Technology in Higher Education*, 21, Article 1.

Commission on Higher Education. (2022). *Digital transformation roadmap for Philippine higher education*. CHED.

Crompton, H., Burke, D., & Lin, Y. (2023). Artificial intelligence in higher education: The state of the field. *International Journal of Educational Technology in Higher Education*, 20, Article 1.

David, A. L., Santos, J. P., & Cruz, M. R. (2023). AI-enabled academic data systems in selected Philippine universities. *Asia Pacific Journal of Educational Management*, 6(1), 33–47.

Department of Information and Communications Technology. (2024). *National artificial intelligence strategy roadmap*. DICT.

EDUCAUSE. (2024). *2024 EDUCAUSE Horizon report: Teaching and learning edition*. EDUCAUSE.

Gašević, D., Tsai, Y.-S., & Sadiq, S. (2022). Learning analytics in higher education—Stakeholders, strategy, and scale. *The Internet and Higher Education*, 52, 100833.

Herodotou, C., Rienties, B., Boroowa, A., Zdrahal, Z., & Hlosta, M. (2022). A systematic review of predictive learning analytics. *Educational Psychology Review*, 34(3), 1539–1569.

Huang, L. (2023). Ethics of artificial intelligence in education: Student privacy and data governance considerations. *Shanlax International Journal of Education*, 11(4), 1–9.

Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics for study success: Reflections on ethical issues. *Educational Technology Research and Development*, 68(2), 1111–1133.

Kizilcec, R. F., Lee, H., & Gomez, C. J. (2020). Fairness in AI-driven educational systems. *Proceedings of the ACM on Human-Computer Interaction*, 4(CSCW1), 1–21.

Kumar, V., & Singh, S. (2021). Intelligent decision-support systems for university administration. *Education and Information Technologies*, 26, 6213–6231.

Lang, C., Siemens, G., Wise, A., & Gašević, D. (2022). *Handbook of learning analytics* (2nd ed.). Society for Learning Analytics Research.

Lim, C. P., Tinio, V. L., Smith, M., & Akyeampong, K. (2021). Digital transformation of education systems in Asia. *Educational Technology & Society*, 24(2), 1–15.

Martínez-Comesaña, M., García-Fernández, J., & del Río-Rama, M. (2023). Artificial intelligence in higher education assessment: Opportunities and risks. *Trends in Neuroscience and Education*, 32, 100206.

Masiello, I., Vallo Hult, H., & Berglund, M. (2024). Learning analytics dashboards in higher education: A systematic review. *Education Sciences*, 14(1), 82.

National Privacy Commission. (2021). *Guidelines on artificial intelligence and data privacy in educational institutions*. NPC.

National Privacy Commission. (2024). *Advisory on the application of the Data Privacy Act of 2012 to AI systems*. NPC.

Nguyen, A., Gardner, L., & Sheridan, D. (2023). Ethical principles for artificial intelligence in education. *Education and Information Technologies*, 28, 4221–4245.

Organisation for Economic Co-operation and Development. (2021). *Artificial intelligence in education: Challenges and opportunities*. OECD Publishing.

Pan, Z., Tang, J., & Zhai, X. (2024). Learning analytics in LMS-supported higher education: A systematic review. *Journal of Learning Analytics*, 11(1), 1–23.

Paulsen, L., McCormick, M., & Worsley, M. (2024). Learning analytics dashboards beyond analytics: A systematic review. *Education and Information Technologies*, 29, 1–33.

Popenici, S. A. D., & Kerr, S. (2020). Exploring the impact of artificial intelligence on higher education. *Research and Practice in Technology Enhanced Learning*, 15(1), 1–13.

Quimba, F. M. A., Cabalza, D. G., & Llanto, G. M. (2024). *Readiness for AI adoption of Philippine business and government*. Philippine Institute for Development Studies.

Ramaswami, G., & McNamara, J. (2023). Evaluating learning analytics dashboards for academic decision-making. *Journal of Learning Analytics*, 10(2), 45–60.

Rets, I., Herodotou, C., & Gillespie, A. (2023). Ethical use of predictive learning analytics in distance education. *Journal of Learning Analytics*, 10(1), 149–167.

Salas-Pilco, S. Z., Yang, Y., & Zhang, Z. (2022). Student data analytics and governance in higher education. *Computers & Education*, 188, 104567.

Santos, J. P., David, A. L., & Cruz, M. R. (2022). Academic analytics for student retention in Philippine universities. *Philippine Journal of Educational Technology*, 4(2), 55–70.

Selwyn, N. (2020). *Should robots replace teachers? AI and the future of education*. Polity Press.

Sharma, K., Giannakos, M., & Dillenbourg, P. (2020). Multimodal data analytics for learning and administration. *British Journal of Educational Technology*, 51(5), 1459–1475.

Siemens, G., & Baker, R. (2022). Learning analytics and educational data mining: Toward communication and collaboration. *Proceedings of LAK22*, 1–6.

UNESCO. (2020). *Artificial intelligence and education: Guidance for policy-makers*. UNESCO.

UNESCO. (2021). *Recommendation on the ethics of artificial intelligence*. UNESCO.

UNESCO Bangkok. (2022). *AI in education policy framework for Asia-Pacific*. UNESCO.

Wang, S., Wang, F., Zhu, Z., Wang, J., & Gašević, D. (2024). Artificial intelligence in education: A systematic literature review. *Expert Systems with Applications*, 252, 124167.

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2020). Systematic review of research on artificial intelligence applications in higher education. *International Journal of Educational Technology in Higher Education*, 17, Article 39.

Zhang, L., & Aslan, S. (2024). AI-supported academic decision-making systems in universities. *Computers in Human Behavior Reports*, 12, 100350.